BAT42-BAT43 Small Signal Schottky Diodes **REVERSE VOLTAGE: 30 V** CURRENT: 0.2 A # DO-35(GLASS) Dimensions in millimeters # **Features** - \Diamond These diodes feature very low turn-on voltage and fast guard ring against excessive voltage, such as electrostatic discharges - 200 mW power dissipation - These diodes are also available in the SOD-123 case with the type designations BAT42W to BAT43W and in designations LL42 to LL43 ## **Mechanical Data** Case: DO-35, glass case \Diamond - \Diamond Polarity: Color band denotes cathode - Weight: 0.004 ounces, 0.13 grams \Diamond #### MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS Ratings at 25°C ambient temperature unless otherwise specified. ### **ABSOLUTE MAXIMUM RATINGS** | | | BAT42 | BAT43 | UNITS | |---|-----------------|-------|-------|------------| | Repetitive peak reverse voltage | V_{RRM} | 30 |) | V | | Reverse breakdown voltage I _R =100μ A (pulsed) | $V_{(BR)}$ | 30 | | V | | Average forw ard rectified current half w ave rectification w ith resist.load @T _A =25℃ and f ≥50Hz | I _{AV} | 200 | 0.0 | mA | | Forw ard surge current @ t<10ms | I_{FSM} | 4 | | Α | | Pow er dissipation @ T _A =65℃ | P_{tot} | 20 | 01) | mW | | Junction temperature | T_J | 12 | 25 | $^{\circ}$ | | Storage temperature range | T_{STG} | -55 | +150 | $^{\circ}$ | ¹⁾Valid provided that leads at a distance of 4 mm from case are kept at ambient temperature. #### **ELECTRICAL CHARACTERISTICS** | | | MIN | TYP | MAX | UNITS | |--|------------------|------|-----|-------------------|-------| | Forward voltage @I _F =200 mA BAT42
BAT43
I _F =10 mA BAT42 | | - | - | 1 | V | | | | - | - | 1 | | | I _F =10 MA BAT42
I _F =50 MA BAT43 | V_{F} | - | - | 0.4
0.65 | | | I _F =2 mA BAT43 | | _ | - | 0.33 | | | I _F =15 mA BAT43 | | - | - | 0.45 | | | Capacitance @ V _R =1V _f =1MH _Z | C _{tot} | - | 7 | - | pF | | Reverse breakdown voltage
V _R =25 V
V _R =25 V,T _J =100 °C | I _R | - | - | 0.5
100 | μΑ | | Reverse recovery time | | | | | | | from I _E =10mA to I _R =10mA | t _{rr} | - | - | 5 | ns | | $I_{rr}=1$ mA, $R_L=100\Omega$. | | | | | | | Thermal resistance junction to ambient | $R_{\theta JA}$ | | | 300 ¹⁾ | K/W | | Rectification efficiency (NOTE2) | ην | 0.80 | - | - | - | ¹⁾Valid provided that leads at a distance of 4 mm from case are kept at ambient temperature. 2)R_L=15K C_L =300pF,f=45MHz,V_{RF}=2V # **BAT42-BAT43** Small Signal Schottky Diodes # **Ratings AND Charactieristic Curves** ## FIG.1 -FORWARD DERATING CURVE # AMBIENT TEMPERATURE, ℃ # FIG.2 -PEAK FORWARD SURGE CURRENT NUMBER OF CYCLES AT 60 Hz ## FIG.3-TYPICAL FORWARD CHARACTERISTIC # 1000 — TJ=25°C — Pulse Width=300µS — 100 — INSTANTANEOUS FORWARD CURRENT m AMPERES INSTANTANEOUS FORWARD VOLTAGE, VOLTS ## FIG.4-PEAK JUNCTION CAPACITANCE JUNCTION CAPACITANCE, pF REVERSE VOLTAGE, VOLTS